Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Clin Nutr ; 119(3): 716-729, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38215886

RESUMO

BACKGROUND: Ketone bodies may have anabolic effects in skeletal muscle via their capacity to stimulate protein synthesis. Whether orally ingested exogenous ketones can stimulate postprandial myofibrillar protein synthesis (MyoPS) rates with and without dietary protein co-ingestion is unknown. OBJECTIVES: This study aimed to evaluate the effects of ketone monoester intake and elevated blood ß-hydroxybutyrate (ß-OHB) concentration, with and without dietary protein co-ingestion, on postprandial MyoPS rates and mechanistic target of rapamycin complex 1 (mTORC1) pathway signaling. METHODS: In a randomized, double-blind, parallel group design, 36 recreationally active healthy young males (age: 24.2 ± 4.1 y; body fat: 20.9% ± 5.8%; body mass index: 23.4 ± 2 kg/m2) received a primed continuous infusion of L-[ring-2H5]-phenylalanine and ingested one of the following: 1) the ketone monoester (R)-3-hydroxybutyl (R)-3-hydroxybutyrate (KET), 2) 10 g whey protein (PRO), or 3) the combination of both (KET+PRO). Blood and muscle biopsy samples were collected during basal and postprandial (300 min) conditions to assess ß-OHB, glucose, insulin, and amino acid concentrations, MyoPS rates, and mTORC1 pathway signaling. RESULTS: Capillary blood ß-OHB concentration increased similarly during postprandial conditions in KET and KET+PRO, with both being greater than PRO from 30 to 180 min (treatment × time interaction: P < 0.001). Postprandial plasma leucine and essential amino acid (EAA) incremental area under the curve (iAUC) over 300 min was greater (treatment: both P < 0.001) in KET+PRO compared with PRO and KET. KET, PRO, and KET+PRO stimulated postprandial MyoPS rates (0-300 min) higher than basal conditions [absolute change: 0.020%/h; (95% CI: 0.013, 0.027%/h), 0.014%/h (95% CI: 0.009, 0.019%/h), 0.019%/h (95% CI: 0.014, 0.024%/h), respectively (time: P < 0.001)], with no difference between treatments (treatment: P = 0.383) or treatment × time interaction (interaction: P = 0.245). mTORC1 pathway signaling responses did not differ between treatments (all P > 0.05). CONCLUSIONS: Acute oral intake of a ketone monoester, 10 g whey protein, or their co-ingestion in the overnight postabsorptive state elicit a similar stimulation of postprandial MyoPS rates in healthy young males. This trial was registered at clinicaltrials.gov as NCT04565444 (https://clinicaltrials.gov/study/NCT04565444).


Assuntos
Proteínas na Dieta , Cetonas , Adulto , Humanos , Masculino , Adulto Jovem , Ingestão de Alimentos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Músculo Esquelético/metabolismo , Período Pós-Prandial , Proteínas do Soro do Leite , Método Duplo-Cego
2.
Nutr Res Rev ; : 1-14, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37681443

RESUMO

Branched-chain amino acids (BCAA: leucine, isoleucine and valine) are three of the nine indispensable amino acids, and are frequently consumed as a dietary supplement by athletes and recreationally active individuals alike. The popularity of BCAA supplements is largely predicated on the notion that they can stimulate rates of muscle protein synthesis (MPS) and suppress rates of muscle protein breakdown (MPB), the combination of which promotes a net anabolic response in skeletal muscle. To date, several studies have shown that BCAA (particularly leucine) increase the phosphorylation status of key proteins within the mechanistic target of rapamycin (mTOR) signalling pathway involved in the regulation of translation initiation in human muscle. Early research in humans demonstrated that BCAA provision reduced indices of whole-body protein breakdown and MPB; however, there was no stimulatory effect of BCAA on MPS. In contrast, recent work has demonstrated that BCAA intake can stimulate postprandial MPS rates at rest and can further increase MPS rates during recovery after a bout of resistance exercise. The purpose of this evidence-based narrative review is to critically appraise the available research pertaining to studies examining the effects of BCAA on MPS, MPB and associated molecular signalling responses in humans. Overall, BCAA can activate molecular pathways that regulate translation initiation, reduce indices of whole-body and MPB, and transiently stimulate MPS rates. However, the stimulatory effect of BCAA on MPS rates is less than the response observed following ingestion of a complete protein source providing the full complement of indispensable amino acids.

6.
Front Sports Act Living ; 2: 568740, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33345126

RESUMO

Background: Variable intensity training (VIT) characteristic of stop-and-go team sport exercise may reduce performance capacity when performed on successive days but also represent a strategy to induce rapid training-induced increases in exercise capacity. Although post-exercise protein enhances muscle protein synthesis, the timing of protein ingestion following variable intensity training (VIT) on next-day recovery and short-term performance adaptation is unknown. Purpose: To determine if immediate (IMM) as compared to delayed (DEL) protein ingestion supports greater acute recovery of exercise performance during successive days of VIT and/or supports chronic training adaptations. Methods: Sixteen habitually active men performed 5 consecutive days of variable intensity training (VIT) in the evening prior to consuming a beverage providing carbohydrate and whey protein (IMM; 0.7 g and 0.3 g/kg, respectively) or carbohydrates alone (DEL; 1 g/kg) with the reciprocal beverage consumed the following morning. Performance was assessed before each VIT (recovery) and 2 days after the final VIT (adaptation). Results: Five consecutive days of VIT progressively decreased anaerobic peak power (~7%) and muscle strength (MVC; ~8%) with no impact of protein timing. Following 2 days of recovery, VIT increased maximal voluntary contraction and predicted VO2peak by ~10 and ~5%, respectively, with a moderate beneficial effect of IMM on predicted VO2peak (ES = 0.78). Conclusion: Successive days of simulated team sport exercise decreases markers of next-day performance capacity with no effect of protein timing on acute recovery. However, practical VIT increases muscle strength and aerobic capacity in as little as 5 days with the latter potentially enhanced by immediate post-exercise protein consumption.

7.
J Appl Physiol (1985) ; 129(1): 133-143, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32525432

RESUMO

Postexercise protein ingestion can elevate rates of myofibrillar protein synthesis (MyoPS), mTORC1 activity, and mTOR translocation/protein-protein interactions. However, it is unclear if leucine-enriched essential amino acids (LEAA) can similarly facilitate intracellular mTOR trafficking in humans after exercise. The purpose of this study was to determine the effect of postexercise LEAA (4 g total EAAs, 1.6 g leucine) on acute MyoPS and mTORC1 translocation and signaling. Recreationally active men performed lower-body resistance exercise (5 × 8-10 leg press and leg extension) to volitional failure. Following exercise participants consumed LEAA (n = 8) or an isocaloric carbohydrate drink (PLA; n = 10). MyoPS was measured over 1.5-4 h of recovery by oral pulse of l-[ring-2H5]-phenylalanine. Phosphorylation of proteins in the mTORC1 pathway were analyzed via immunoblotting and mTORC1-LAMP2/WGA/Rheb colocalization via immunofluorescence microscopy. There was no difference in MyoPS between groups (LEAA = 0.098 ± 0.01%/h; PL = 0.090 ± 0.01%/h; P > 0.05). Exercise increased (P < 0.05) rpS6Ser240/244(LEAA = 35.3-fold; PLA = 20.6-fold), mTORSer2448(LEAA = 1.8-fold; PLA = 1.2-fold) and 4EBP1Thr37/46(LEAA = 1.5-fold; PLA = 1.4-fold) phosphorylation irrespective of nutrition (P > 0.05). LAT1 and SNAT2 protein expression were not affected by exercise or nutrient ingestion. mTOR-LAMP2 colocalization was greater in LEAA preexercise and decreased following exercise and supplement ingestion (P < 0.05), yet was unchanged in PLA. mTOR-WGA (cell periphery marker) and mTOR-Rheb colocalization was greater in LEAA compared with PLA irrespective of time-point (P < 0.05). In conclusion, the postexercise consumption of 4 g of LEAA maintains mTOR in peripheral regions of muscle fibers, in closer proximity to its direct activator Rheb, during prolonged recovery independent of differences in MyoPS or mTORC1 signaling compared with PLA ingestion. This intracellular localization of mTOR may serve to "prime" the kinase for future anabolic stimuli.NEW & NOTEWORTHY This is the first study to investigate whether postexercise leucine-enriched amino acid (LEAA) ingestion elevates mTORC1 translocation and protein-protein interactions in human skeletal muscle. Here, we observed that although LEAA ingestion did not further elevate postexercise MyoPS or mTORC1 signaling compared with placebo, mTORC1 peripheral location and interaction with Rheb were maintained. This may serve to "prime" mTORC1 for subsequent anabolic stimuli.


Assuntos
Aminoácidos , Treinamento de Força , Aminoácidos Essenciais , Humanos , Leucina , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Músculo Esquelético/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Serina-Treonina Quinases TOR
8.
J Nutr ; 150(3): 505-511, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31618421

RESUMO

BACKGROUND: Dietary protein supports resistance exercise-induced anabolism primarily via the stimulation of protein synthesis rates. The indicator amino acid oxidation (IAAO) technique provides a noninvasive estimate of the protein intake that maximizes whole-body protein synthesis rates and net protein balance. OBJECTIVE: We utilized IAAO to determine the maximal anabolic response to postexercise protein ingestion in resistance-trained men. METHODS: Seven resistance-trained men (mean ± SD age 24 ± 3 y; weight 80 ± 9 kg; 11 ± 5% body fat; habitual protein intake 2.3 ± 0.6 g·kg-1·d-1) performed a bout of whole-body resistance exercise prior to ingesting hourly mixed meals, which provided a variable amount of protein (0.20-3.00 g·kg-1·d-1) as crystalline amino acids modeled after egg protein. Steady-state protein kinetics were modeled with oral l-[1-13C]-phenylalanine. Breath and urine samples were taken at isotopic steady state to determine phenylalanine flux (PheRa), phenylalanine excretion (F13CO2; reciprocal of protein synthesis), and net balance (protein synthesis - PheRa). Total amino acid oxidation was estimated from the ratio of urinary urea and creatinine. RESULTS: Mixed model biphasic linear regression revealed a plateau in F13CO2 (mean: 2.00; 95% CI: 1.62, 2.38 g protein·kg-1·d-1) (r2 = 0.64; P Ë‚ 0.01) and in net balance (mean: 2.01; 95% CI: 1.44, 2.57 g protein·kg-1·d-1) (r2 = 0.63; P Ë‚ 0.01). Ratios of urinary urea and creatinine concentrations increased linearly (r = 0.84; P Ë‚ 0.01) across the range of protein intakes. CONCLUSIONS: A breakpoint protein intake of ∼2.0 g·kg-1·d-1, which maximized whole-body anabolism in resistance-trained men after exercise, is greater than previous IAAO-derived estimates for nonexercising men and is at the upper range of current general protein recommendations for athletes. The capacity to enhance whole-body net balance may be greater than previously suggested to maximize muscle protein synthesis in resistance-trained athletes accustomed to a high habitual protein intake. This trial was registered at clinicaltrials.gov as NCT03696264.


Assuntos
Proteínas na Dieta/administração & dosagem , Exercício Físico , Metabolismo , Recomendações Nutricionais , Treinamento de Força , Adulto , Testes Respiratórios , Creatinina/urina , Humanos , Masculino , Fenilalanina/análise , Fenilalanina/urina , Ureia/urina , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...